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Design of Disturbance Decoupled Bilinear Observers

Kyongsu Yi*
(Received March 15, 1995)

An observer structure for bilinear systems is formulated such that the estimation error is
independent of unknown external disturbances. The sufficient conditions for the existence of a
stable bilinear observer are described. The proposed observer is applied to estimate the tire force
in a vehicle semi-active suspension problem.
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1. Introduction

A bilinear system is a special nonlinear system.
In practice, there exist many bilinear systems such
as semi-active suspension systems, ecological sys­
tems, nuclear reactor systems, heat exchangers
and so on. Existence of bilinear observers has
been studied by Grsselli(l981) and Derese(l981).
The study on the design of an observer for
bilinear systems without unknown disturbances
has been made by many authors(Hara, 1976;
Williamson, 1977; Funahashi, 1979; Derese,
1979; Hsu, 1981 and Kimbrough, 1984). The
design of an observer for a linear system with
unknown disturbances has been studied by many
people(Bhattacharyya, 1978; Kobayashi et aI.,
1982; Fairman et aI., 1984, etc), and the study of
a disturbance decoupled bilinear observer has
been made by A. Hac( 1989). However, relatively
little research has been performed on the state
estimation of bilinear systems with an unknown
disturbance.

The bilinear observers proposed by former

researchers require a necessary condition which
makes the observer error dynamics linear, i.e., the
error dynamics are independent of the bilinear
input. An alternative method proposed by
Wiliamson(l977) tends to produce complicated
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bilinear observer schemes involving strongly non­
linear functions of the input and its higher order
derivatives. Derese et al.(l979) proposed another
design method by exploiting the boundedness of
the input. Their method can be used only when
measurements are combinations of the states, i.e.,
y= ex. A class of bilinear observer presented by
Hsu and Karanam(l981) is valid only for a
bilinear systems having an exponentially bounded
input. The necessary conditions for the distur­
bance decoupled bilinear observer proposed by
Hac(l989) require the measurements of the distur­
bance related states, that is the states on which the
disturbance is applied. However, in general, the
measurements of the states coupled with unknown
disturbance are very difficult to make.

In this paper an observer for a bilinear system
with an unknown disturbance whose estimation
error is independent of the disturbance is inves­
tigated and the stability of the bilinear observer is
discussed. The observer structure proposed in this
paper is an extension of observers for linear
systems with unknown inputs. The conditions for
the bilinear observer discussed in this paper are

less restrictive for the measurements because the
structure of the error dynamic equation for
proposed observer is bilinear, i.e., the proposed
bilinear observer is designed such that the norm
of the estimation error decays to zero exponential­
ly irrespective of the input while the estimation
error dynamics depend on the input. The
proposed bilinear observer can be designed for a
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class of time-invariant bilinear systems with
bounded inputs. Proofs of theorems are collected
in the Appendix.
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independent of the input u, initial state xo and Zo

and unknown disturbance(Hara, 1976). If K = 1m

it is said to be a state observer. It should be noted

where vERq, zERT, (r+q)sn, yzERS
, ssp

and all matrices are constant with proper dimen­
sion. It should be noted that the dimension of v is
q which is the same as that of the unknown
disturbance w. This and Eg. (5) imply that q

states, v, is estimated by a combination of mea­
surements, y, input, u(t), and estimated states, z.

The bilinear observer represented by (3)-(5) is
said to be an observer for Kx(KER(q+T)Xn) of

the bilinear system (1)-(2), if

where Y2ERq, x2ERq, wERq, Q is matrix with

appropriate dimension and det( C22) =lrO, then the
bilinear system satisfies the assumptions.

For the bilinear system (1)-(2) which satisfies
the assumptions ( I ) - ( m), a bilinear observer
with the following structure is proposed to obtain
the state estimate whose estimation error tends to
zero asymptotically irrespective of the distur­
bance, w, and the input, U for all initial condi­

tions, xo, z<).

(2)

(I)i=Ax+fDixu.+Fw
i=1

where x is an n-state vector, U=[Uh U2, "', UmY
is an m-input vector, y is a p-output vector and
all matrices are constant and have proper dimen­
sions. Assume that all inputs are bounded, i.e.,

dim(y) = p>dim (w)=q.

( n) the number of states on which the distur­
bance is applied is the same as that of the distur­
bance.
( m) q outputs are represented as functions of the
disturbance related states to which the distur­
bance is applied.

If the bilinear system represented by Egs. (I)

There exists some bound on the input in practical
applications.

An intuitive approach to design a state
observer is to copy its state Eg. (I) plus a feed­
back te:rm which utilizes the information
contained in the measurement, y. The problems
associatt:d with this intuitive approach are due to
the fact that the error dynamics of the observer
designed by this method depend on the unknown
disturbance, w, in addition to the input, u. An
oberver structure for bilinear systems with un­
known disturbances is formulated to overcome
these problems.

In what follows it is assumed that the bilinear
system represented by (I) - (2) satisfies the fol­
lowing assumptions.
( I ) the number of measurements is greater than
the number of unknown disturbances, i.e.,

2. Disturbance Decoupled Billinear
Observers
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m m
Ae=(Az- HCz+ ~D;Ui-~HE;Ui)

i=l i=l

the bilinear system z=A e Z lS

asymptotically stable for all u E Q ( II)

where

Remark 1. The condition (II) implies that
(A z , Cz) should be an observable pair.

Theorem 2. For every u E Q and every distur­
bance w, v converges to Ux(UERqxn) as Z
converges to Wx if:

(19)

(17)

(15)

v=Nz, u, y)

minuEoAmln[ Q( u)] >0

where

v is the estimate of the disturbance related states

xw and z is the estimate of th~ states xz, i.e., v =

xw, z=xz·
After (iii) we find B z , B~ and PI from the

system Eqs. (1)-(2).

(iv) Obtain the state equation for z, i.e., A z ,

D;' H, Cz, E; and L from the bilinear system
equation.

( v) Select the observer feedback matrix H to
guarantee the stability of the homogeneous part of

the error dynamics, i.e., ez = A e( u (•»ez·
In the design of the bilinear observer the stabil­

ity of the observer depends on the selection of the
observer feedback matrix H. For the bilinear
system which satisfies the assumptions ( I ) - ( m),
i.e., which can be decomposed into the Eqs. (I ')

to (2') an observer structure which satisfies the
Eqs. (8)-(10) and (12)-(14) can be obtained by

applying the above procedure. Hence, H should
be designed so that the bilinear dynamic system

m
=(Az+ HCz)z+ ~(W-HE;)UiZ (18)

i=l

is asymptotically stable. The observer feedback
gain H should be chosen such that the minimum
eigenvalue of Q(u) for all uEQ is greater than
zero, i.e.,

Q(u)= -(A:(u)P+ PAAu» (20)

( ii) Obtain relations between the disturbance
related states Xw i.e. X2 in equation (I '), the
remaining states and the measurement y such that
xw can be written as follow:

This is possible if the bilinear system represent­
ed by Eqs. (I) - (2) satisfies the requirements ( I )
-( m).

(iii) Define Xz= Wx, which is a subspace of x,
from equation (15) and system Eqs. (1)-(2) such
that x can be replaced by Xz in Eq. (IS),

xw=Nxz, u, y), (16)

then v can be written as follow:

(8)

(9)

(10)

(WA-AzW-LC)
-H(HC-CzW)=O
(WDi-D;W - LEi)
- H(P2E i

- E;W)=Q
i=l, "', m.

WF- LFy- H(HFy)=Q

and

P1Fy=Q (12)

PIC=U-BzW (13)
PIEi=-B~W, i=l, "', m. (14)

For the class of bilinear systems satisflying the
required assumptions ( I ) - ( m), next prodedure
can be used for the synthesis of the disturbance
decoupled bilinear observer with the structure
represented by Eqs. (3) to (5). The observer
matrices are determined from the system Eqs. (I)

- (2) and only the observer feedback matrix H is
the design parameter.

The synthesis of the distrubance decoupled
bilinear observer can be summarized as follows.

( i ) Pick v as an estimate of the disturbance
related states. The disturbance related states are
state variables whose derivatives are affected by
the disturbance. For example, let v= X2={J; for
the system represented by equation. (I ').

that the proposed bilinear observer requires no
knowledge of the unknown disturbance w.

The sufficient conditions for the existence of a
stable bilinear observer with the structure re­
presented by Eqs. (3) to (5) is given by Theorem
I and Theorem 2.

Theorem 1. For every input uEQ and every

disturbance w, Z converges to Wx if there exist
some H such that the following conditions are
satisfied:
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Aiu)=(A,.+ HCz )+ f.(D~-HE~)Ui(21)
i=l

where the unknown disturbance w( = i r) is the
rate of change of road elevation and

3. The Design of a Bilinear Observer
for a Semi-active Suspension

(28)

(26)

(25)

(27)

u = {u I Urnln:S;; U :S;; Urnax}

From the relation between )I( = X3) and the
measurement yz, Z is determined, i.e.,

)I=ox3=fl(Yz, Xl' (XZ--=-X4»

= fz(yz, z)

and matrices C, El and F y are determined by the
state Eq. (22). Select the tire deflection as )I,

which is a disturbance related state. i.e.,

)1=' X3= Ux
U,=[OO I 0]

Fig. 1 Quarter car model with semi-active suspen­
sion

and

3.2 A billinear observer for a semi-active
suspension

Based on the bilinear observer proposed in
section 2 an observer is designed to estimate the
dynamic tire force, which is difficult to measure in
real time. Assume that axle acceleration and
sprung mass acceleration are measured. Thus the
measurement y is

sion. The semi-active force is implemented by a
controllable shock absorber. For this representa­
tion, the control input u is the controllable
damping rate and is determined by a semi-active
control strategy within a given range. In actuality,
the variable damping rate, u(t), is modulated in
the following admissible space:

(22).i =Ax+Dxu+Fw

X=[Zs-Zu is Zu-Zr iu)T (23)

0 I
0

I

k b 0 b------

.4=
ms ms

0
ms

0 0 I

k b _JiL bmu mumu mu
0 0

0 I 0 I
0 - ms 0 ms

.0=
0 0 0 0

0 I 0 I
mu m u

F~[n (24)

It is assumed that dynamic tire force is propor­
tional to tire deflection by the constant k t . Also
the assumption that tire damping is insignificant
is used in the modeling of the semi-active suspen-

3.1 Semi-active suspensions
Consider the quarter semi-active suspension

model shown in Fig. I. The equation of motion of
this system is represented by a bilinear form(Yi
and Hedrick, 1993):

and P is a positive definite matrix.
The stability guaranteed region of the gain H

may be found either analytically or numiercally.
The problem of finding the stability guaranteed
region of the oberver gain H can be handled
separatcdly for each application. There is no
simple way to do this systematically for any

bilinear system.
As an application, the design of a disturbance

decoupled bilinear observer for a semi-active
suspension is explained in the next section.
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A sum of sine functions was used to generate an

unknown road input disturbance.

Figure 2 shows the comparisons between the

3.3 Simulation results
The bilinear observer designed in section 3.2

was implemented on a semi-active suspension

simulation. To simulate the observer behavior for
the semi-active suspension system, the following

parameters adapted from heavy truck data(Yi and

Hedrick, 1989) were used.

ms=7530[Kg), mu =656.6[Kg)
k= 1786205[N/m), kt =3586419[N/m)

b= 102128[N/(m/s»)

urnax=5 x b[N/(m/s»)
llrnin= -0.8 x b[N/(m/s))

dynamic tire force, the spring deflection and the
spring deflection rate with the axle acceleration

and the sprung mass acceleration measurements.
The suspension velocity should be known in
order to determine the damping rate of the con­
trollable shock absorber. The measurements of
acceleration may be made with ease compared to

velocity or deflection measurements. As
mentioned in the introduction, this study has been

motivated by a state estimation problem in semi­
active suspension control to reduce the dynamiic
axle load where the dynamic tire force and the

spring deflection rate are the most important
states in the control law(Yi and Hedrick, 1989).
Therefore the bilinear observer designed in this

section may be very effective in semi-active sus­

pension control to reduce the dynamic axle load.

Fig. 2 Comparisons between state and estimated

state

(29)

Defi ne the estimation error, ez, as W1: - z. Then,
the error dynamics are expressed as

In this case a bilinear observer for a semi-active
suspension is expressed as

where

. [ hi ~s I +hi (b~su) ]

Cz= k (b+ ) ez
(112 ~ I )~--- (h2 - I ) u

m s nts

= A e ( u )ez (32)

It is straightforward to verify that the bilinear

observer to estimate the dynamic tire force for a
semi-active suspension satisfies the conditions (8)

- (10) except the condition (II). Therefore if the

error dynamics are asymptotically stable, the
dynamic tire force estimation error tends to zero

by Theorem I and Theorem 2. The stability of the

bilinear observer depends on the observer feed­
back gains (h hz). The stability region of the

gains (h hz) can be found by following the
procedure for the gain H given in section 2.

Remark 2. The bilinear system (32) is

asymptotically stable if the observer feedback
gains (III' hz) satisfy the following conditions:

_ ~ms [I +2(b + Urnln).
lImax . llmax

+2 iTFi ;trniJ-(I ~.Vz+ Urn: f)-J < hi <0V-- llmax llmax

hz< I 0

The bilinear observer discussed in this section
for a semi-active suspension estimates the
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actual states and estimated ones. The estimator

starts to work at 0.5 second. The estimation error

tends to zero as time increases even if the road

input disturbance is unknown. The error due to

unknown initial conditions converges rapidly and

the estimates track the actual state after the tran­

sient phase. The unknown road profile and the

controlled damping rate are shown in Fig. 3.

The: effect of parametric error on the estimation

errors was investigated. The actual states and the

estimated ones when there is 20% sprung mass

error, - 10% unsprung mass error, 10% tire stiff­

ness error and - 5% suspension stiffness error are

compared in Fig. 4. It is shown that the estima­

tion errors are bounded. Fig. 4 indicates that the

bilinear observer is robust to parametric error.

Although measurments of the sprung mass

velocity may be made by integrating the output of

i~E3
~ -O.O~

-0.1 -o 0.2 0.. 0,6 0.8 J 1.2 1.4 1.6 1.8 2

Ti.me Ilecl

(8) Road Profile

"""~'" 400

!:~. ~-
o 0.2 0.4 O.b 0.8 I 1.2 Lot 1.6 1.8 2

Time lloetj

(b) COlllrolled Damping Rale. u{t)

Fig. .3 Unknown road profile(disturbance) and con­
trol input u(t)

an accelerometer, measurement of the tire forces is

very difficult to make for real time control

because of the unknown road input. Thus it is

beneficial in semi-active suspension control to

design an observer which estimates the necessary

states, whose estimation error due to initial condi­

tions converges to zero sufficiently quickly and

whose error is independent of the unknown road

input.

4. Conclusions

A bilinear observer whose estimation error is

independent of the unknown disturbance has

been provided and stability conditions for the

observer were investigated. The necessary condi­

tions for the measurements are relaxed compared

to that of the disturbance decoupled bilinear

observer that cancels the effect of the input in the

observer internal model.

The proposed disturbance decoupled bilinear

observer is applied to a semi-active suspension

system. The stability guaranteed region for the

observer feedback gain in this case was provided.

The dynamic tire force, the spring deflection and

the spring deflection rate were estimated without

estimation error using the axle acceleration and

the sprung mass acceleration measurements which

may be made with ease.

In practice, the measurements are contaminated

by noise and the optimization of the observer

feedback gains in the stochastic case is necessary

in addition to the stabilization of the bilinear

observers. The optimal bilinear observer design in

the stochastic case wiIl be studied in the future .

PROOF of THEOREM I. Define the estima-

Appendix

e...=Aee...
+{( WA-A ... W-LC)-H(PzC

(A.I)e... = Wx-z
then,

tion error, e..., as:

_,ta.lt

_··nlllnalt

0.2 0.. 0.6 0.' 1.2 1.4 1.6 ...

..
}(J

III

~

i "

J -10

-lll

-}(J

...
0

Fig. 4 Comparisons between state and estimated
state( with parametric errors: ems = 1.20 emu
=0.9 ekt = 1.1 eks=0.95)

-CzW)}x

+±{( WD'-D~W-LE')- H(PzE'
i=1
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If conditions (12) to (14) are satisfied, then
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and under the conditions (II) dz converges to
zero asymptotically. 0
PROOF of THEOREM 2. By substituting y into
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equation:


